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Summary

Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can help to
reduce greenhouse gas emissions and our dependence on foreign oil. PEVs will also be an
integral part of the future smart grid, due to two main features: First, PEV charging
stations will most likely be available at home and at work, offering flexible charging
options. Second, these vehicles will have the capability of transmitting electricity back to
the grid, known as a vehicle-to-grid (V2G) system. These features allow PEV charging
and discharging to be distributed among vehicles in order to benefit the consumer, who
may profit from charging when electricity prices are relatively low and discharging when
the electricity prices are higher. Moreover, a fleet of vehicles can be used to provide grid
services for electric utilities. Utility companies may utilize PEVs as distributed energy
storage devices that store surplus electricity generation to be transferred back to the grid
in times of deficit, which will assist the integration of variable generation via renewable
energy resources into the grid. However, along with these benefits come challenges and
risks. For example, how will PEVs impact the stability of power grid? What type of
market mechanism would be most efficient to organize this distributed trading? Are
there new business and service industries that could be created to manage PEVs? Our
proposed project aims to address these questions and challenges. In particular, we
propose to construct an automated Demand Response (DR) mechanism for a fleet of
PEVs that defines the role of electric vehicles in a smart grid. An aggregator, a new
service unit, will communicate energy needs between a fleet and a utility, and regulate
consumer electricity use to yield a beneficial transfer of energy. The DR aggregator
uses a simple price equilibrium to instantly and automatically determine feasible energy
exchange schedules for tens of thousands of vehicles as they plug-in to the grid, based
only on a relatively small amount of aggregated historical data. Moreover, fleet charging
of vehicles would be managed to stay within bounds placed by utilities. The charging
and discharging schedules are robust to unexpected events, and reduce the consumer
cost of charging a PEV. These generated schedules can result in a balance of electricity
supply and demand and ensure that a new demand peak is not created, which are key
features to maintaining the stability of the electricity grid.
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1 Problem Statement

A Plug-in Electric Vehicle (PEV) is any vehicle that uses electricity from the grid to displace
liquid fuel. PEVs currently on the market are able to plug-in to the electricity grid and control
which times during the connection period the vehicle battery will actually charge [11]. This feature
will allow consumers to charge their vehicles when the price of electricity is relatively low. The
future electric vehicle will incorporate a number of new technologies. Specifically, we consider
the ability of vehicles to transmit electricity back to the grid, or provide vehicle-to-grid (V2G)
services [12]. This capability could benefit both consumers and utilities, by helping to cultivate
a balance between the electricity supply and the demand and reducing the cost of charging to
consumers. A new mechanism is needed to regulate this trading in an electricity market between
PEVs and the utilities, while maintaining the stability of the grid.

For example, suppose a vehicle is plugged in from 6pm until 7am, giving an 11-hour window
in which the vehicle is connected to the grid. If the battery can obtain sufficient charge in one
hour, the charging could occur during the hour between 6pm and 7am when the electricity price
is the lowest. The remaining 10 hours can be spent transferring an equal amount of energy to and
from the grid: storing electricity during periods of low power demand and transmitting energy back
to the grid when the demand is high. This will also typically result in a monetary profit for the
consumer.

We plan to construct an automated mechanism that defines the participation of plug-in electric
vehicles on a smart grid, by implementing Demand Response (DR) services with a fleet of PEVs.
This service will be managed by a new service between fleets of vehicles and utilities, called an
aggregator. The aggregator will schedule a transfer of electricity that will distribute a sufficient
amount of energy to each vehicle, ensure a reduced cost to the PEV owner, and meet a scheduling
obligation made by the utility. Such regulation leads to a reduction in peak power loads, promotes
the integration of renewable energy generation and can motivate consumers to buy vehicles that
depend less on oil than their gasoline-powered counterparts. Our algorithm will use linear program-
ming to determine equilibrium prices for each hour that account for the charging needs of the fleet,
vehicle driving schedules, current electricity pricing and a market scheduling obligation. Energy
exchange schedules based on this pricing will be determined instantly as vehicles plug-in, with-
out depending on information regarding other vehicles in the fleet during the connection period.
The resulting energy exchange will ensure each vehicle is sufficiently charged, while attempting to
balance the electricity supply and demand.

1.1 Background

Current PEV charging stations allow management of charging, where the user is required to select
and program the exact charging schedule [11]. These charging stations are not capable of auto-
matically scheduling the vehicle to to charge during the period with the lowest expected electricity
price, or lowest demand. There is a need among aggregators for an automated DR mechanism
that manages the market between a fleet of PEVs (say, around 10,000 vehicles) and their utility,
to minimize the cost to the consumers and meet an obligation to the utility.

Currently, aggregators between consumers and electric utilities are either third-party companies
(such as EnerNoc or ZigBee) or are run by the utilities themselves (both PG&E and Duke Energy
have DR programs, among others). These aggregators regulate demand to meet a scheduling
obligation to the market, or system dispatcher, by rewarding decreases in electricity use during
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certain time periods. However, existing programs focus on the Commercial and Industrial Sector,
with a small number of large customers who typically use hundreds of kilowatt hours (kWh) per
day [19]. These programs are not automated, requiring human intervention to individually tailor
the DR resource for each customer and monitor the electricity use of each customer alongside the
market supply and prices.

By contrast, some estimates say there may be 100 million PEVs on the road in the United
States by 2030 [7] and each PEV battery will generally require a few kWh each day. Moreover, a
V2G system will require unique management oversight for a mutual electricity transfer. Due to the
expected prevalence and size of PEV fleets, DR services for a fleet of PEVs providing unprecedented
energy exchange cannot be individually monitored for each vehicle. Aggregators need an automated
mechanism to facilitate the charging and discharging schedules of the fleet to meet the needs of the
vehicles and satisfy a scheduling obligation to the market.

1.2 Related Work

A number of papers in the field of electric transportation have established the benefits of smart
charging, including [3, 6, 13, 21]. However, there is currently no standard agreement on how to
manage a mutual energy exchange between PEVs and the grid. A number of previous works
consider V2G, yet depend on the knowledge of exact driver behaviors and energy needs of all
vehicles in the fleet prior to determining the energy exchange of any individual vehicle, i.e., these
mechanisms are not dynamic. There has also been work that dynamically regulates PEV energy
use, but these algorithms do not consider a scheduling obligation that needs to be met and are not
robust to unexpected events. Moreover, we feel that no algorithm suggested has been realistically
implementable.

For example, Han et al. in [8] use dynamic programming to assign charging schedules that
provide frequency regulation. Similarly, in the work by Wu et al. [22] an algorithm is constructed
that makes dynamic decisions for lowest-cost charging schedules of PEVs. Neither of these works
considers a scheduling obligation, and the demand of each vehicle is considered individually (i.e.,
not as part of a fleet); both suggested algorithms would result in an increased peak demand. In [9],
Ma et al. establish a decentralized algorithm that determines an equilibrium price so that the total
amount of charging done in the fleet fills the ‘overnight demand valley.’ This algorithm takes into
account all vehicles in the fleet, but is not dynamic since it requires all vehicles to be connected to
the grid at the same time and exactly report their future driving schedule; this work also assumes
only a few types of driving behaviors exist.

2 Objectives

We plan to construct a DR service for PEVs that is simple and thorough in design. The service
will be understandable and trustworthy for both consumers and utilities, and its implementation
can result in substantial benefit for both parties.

A PEV fleet aggregator will determine energy exchange schedules for each vehicle that ensure
the needs of both the PEV consumers and the utility are met. First, the aggregator communicates
with the utility to agree upon a scheduling obligation, possibly in the form of upper and lower
bounds on electricity usage over time. Next, as vehicles plug-in to the grid at various times, the
aggregator will instantly determine at which times during a vehicle’s connection it should charge
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and discharge. Our algorithm will construct energy exchange schedules that:

· are assigned instantly as vehicles plug-in to the grid,
· provide enough charge to each individual PEV to meet its daily transport load,
· meet the obligation to the market,
· maintain grid stability,
· consider the demand of the fleet as a whole, and
· reduce the cost (or increase the profit) to the consumer.

Our mechanism will be easily used by a fleet aggregator to perform demand response. The
implementation will be very simple: a unique set of adjusted prices will be constructed that accounts
for the current electricity and gasoline prices, electricity load and amount of power “available”, the
energy demand of each vehicle, and individual vehicle characteristics. Allocating vehicle charging
to hours when the adjusted price is lowest and discharging to the hours with higher adjusted price
values will result in an exchange of energy that maximizes consumer profit and balances supply
and demand.

2.1 Proposed Research

We aim to establish the role of a new service between utilities and consumers, which manages the
electricity trading market and maintains stability on the grid. Our pricing scheme will depend only
on historical data, and will not need to predict or know a priori the driving patterns of each vehicle
in the fleet. We will use real data on driving behaviors, electricity loads, electricity and gasoline
pricing, and vehicle characteristics to show our mechanism will work in realistic scenarios.

In order to estimate the availability of vehicles to the grid (i.e., their connection times) and
vehicle transport loads, we use clustering. Specifically, we plan to use the k-means clustering
algorithm with Euclidean distances on the transport loads of simulated fleets. We define a base
driving profile to be the “best-fit” to a group of drivers with similar driving patterns. Based on the
portion of drivers corresponding to each base profile, the availability and needs of a fleet of vehicle
can be approximated. Actual driving behaviors can be obtained from the National Household
Transportation Survey (NHTS) [18], which contains the driving schedule of over 150,000 individuals,
each for a 24-hour period.

Once we have formed k base driving profiles based on previous, similar days, the aggregator
can form a linear program to find the optimal exchange of energy for each base driving profile. We
can use the results of this linear program and its dual to establish an ‘equilibrium price’ for energy
during each time period, or hour. If charging and discharging schedules are determined based on
this price, there will be an optimal energy exchange that maximizes consumer profit and meets the
scheduling obligation with the utility, while providing each vehicle with enough energy to drive.

To determine such energy exchange schedules, we assume the aggregator can learn from each
vehicle its expected driving schedule for the next n hours and the vehicle characteristics. We
will consider Plug-in Hybrid Electric Vehicles (PHEVs) that receive power from both gasoline and
electricity, in addition to Battery Electric Vehicles (BEVs) that only receive power from an electric
motor. We also assume the aggregator knows the electricity and gasoline prices at each hour and
has committed to a scheduling obligation with the utility, for example, the utility may place upper
and lower bounds on total electricity usage of the fleet during given time periods.

In our current work [17], we construct constraint-adjusted prices, which use the dual variables
from a linear program to determine an allocation of charging to vehicles. Each cluster has a distinct
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set of constraint-adjusted prices such that allocating charge according to these prices will ensure the
additional electricity load caused by charging the fleet will stay below an upper bound determined
by the utility. Real electricity load and pricing data are used, from sources listed in [16], and the
scheduling obligation to the utility ensures that the daily peak demand will not increase.

Our future work will use our previous formulation and implementation as a platform, from which
we can create a simpler mechanism that will determine both charging and discharging schedules to
meet a wider range of scheduling obligations. We will construct an equilibrium price that can be
used to determine the charging and discharging schedules of each vehicle, and result in a schedule
of energy transfer that is of the lowest cost to the consumer and attempts to balance the electricity
supply with the demand.

We plan to construct a mechanism that is realistically implementable for the aggregator. Using
real data, we will show that an aggregator using our equilibrium price algorithm will provide a DR
service that is robust to unexpected events [5]. This price will be based on historical data, and may
employ dynamic prediction market techniques to learn the distribution of the trading population,
such as [1]. Vehicle charging and discharging allocated using our price equilibrium will lead to
schedules that maximize the consumer’s profit and meet the energy needs of each vehicles, while
meeting the scheduling obligation.

2.2 Significance

Regulating the electricity usage of PEVs will reduce the cost of charging to the consumer, and
reduce the increase in electricity peak demand. It is projected that by the year 2030, between
6% and 30% of vehicles in use will be PEVs [6], which suggests a possible increase in electricity
demand due to PEV charging. In [6], the Electric Power Research Institute (EPRI) showed that in
the worst case, the increase in total grid capacity will be 5-6%, where as shifting some charging to
off-peak hours will decrease the impact to only 1-2%. In a collaborative work between Better Place
and PJM Interconnection [14], Schneider et al. showed that such controlled charging will reduce
consumer energy costs by 45% .

Moreover, as mentioned in Section 3.1 below, PEVs will encourage the integration of renewable
energy generation into the grid, by providing a distributed energy storage resource. PEVs can also
provide frequency regulation to help improve the stability of the grid. Using PEVs to provide grid
service is an essential part of the future grid.

3 Expected Interest

There are a number of third-party aggregators and utilities currently providing DR services to large
customers, mostly in the commercial and industry sector. These programs require individual moni-
toring and human intervention to motivate reductions in electricity usage. When these aggregators
extend their services to households and PEVs, they will need an automated algorithm to facilitate
a beneficial and stable transfer of energy.

The energy requirements of electric vehicles are extremely unique. First, at any given time, the
majority of vehicles are stationary, or parked. For example, [4] shows that on any given day 54% of
vehicles are not driven at all. The same work also shows that 90% of vehicles start and end their
days at home, implying that there is a substantial window of time every night when the vehicle will
possibly be plugged-in with the potential for both charging and discharging with no effect to the
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consumer. Furthermore, the energy needs of a vehicle can be estimated fairly well by the driver,
for a limited amount of time into the future, say 24 hours.

We plan to design a mechanism specifically for PEVs that could be used by current DR ag-
gregators. Moreover, our algorithm will result in substantial monetary profits and environmental
offsets to motivate consumer participation.

3.1 Benefits

Plug-in electric vehicles will run off of electricity provided by the grid, which can be generated
sustainably. Thus, when more consumers choose PEVs over gasoline-powered vehicles, it reduces
greenhouse gas emissions and our dependence on oil. However, many consumers need more specific
motivation to buy PEVs. An implementation of our algorithm by an aggregator will result in a
daily monetary profit for the consumer, in addition to maintaining the stability of the electricity
grid and environmental offsets.

Furthermore, PEVs that participate in a V2G demand response program can help to take full
advantage of renewable energy. Renewable energy sources provide sustainable electricity generation,
but result in variable and uncertain production levels. Energy storage is needed to store excess
electricity during periods of surplus that can be used later in times of deficit. However, the large
capital required for centralized energy storage has been a difficult obstacle to overcome. Thus, using
PEVs as distributed storage has become a common solution in the energy storage field. A fleet of
PEVs providing grid service will help make renewable energy resources a more practical integration
into the current electricity grid, in addition to helping improve the stability of the future electricity
grid by providing frequency regulation [15].

Many renewable power plants generate more electricity than is needed during off-peak hours,
and a lack of sufficient energy storage means this surplus cannot always be stored for later use to
meet the demand. For example, during the first half of 2008, an overproduction of wind power in
West Texas led to negative electricity prices 20% of the time, and most of this surplus occurred in
the middle of the night [20]. If vehicles had been connected to the grid with a DR mechanism, they
may have actually profited from charging their batteries during these time periods and storing the
surplus energy for later use.

3.2 Feasibility

Our mechanism can be implemented within a device attached to each individual vehicle in a fleet;
these devices can communicate with each other and regulate vehicle charging, in order to maximally
benefit the market and maintain grid stability. Such a device is a practical extension of services
that are currently provided with PEV charging stations, which allow the user to control charging
but require settings to be determined by the user [11]. An aggregator’s role is between these devices
and the dispatcher to establish and monitor the market supply and vehicle demand. Currently,
an infrastructure that allows such regulation of charging is in the initial development stages [10].
With such an infrastructure in place, aggregators will need an algorithm to automate the process
of using PEVs as a DR resource.

It should be mentioned that such managed charging is envisioned to be an ‘opt in’ service
that a consumer has the option to participate in. Consumers can sign up with an aggregator that
manages electricity trading with their utility. Some consumers may not be willing to offer their
vehicles as energy storage devices to benefit the grid, however we hope to show that the monetary
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profit and environmental offsets that can be achieved by participating in such a service will provide
substantial motivation for consumers.

3.3 More Research Directions

Aggregation of consumers to provide an automated DR resource to a smart grid is a service that
can be extended to entire households. The future electricity grid will allow consumers to regulate
their electricity use in reaction to market prices and supply. In a household, there are a number
of appliances for which the exact usage time is not critical. For instance, a dishwasher could be
set to run overnight, during the time when electricity price is lowest before 8am. Such guidance of
electricity usage will require an automated mechanism between the consumers and the electricity
market. This regulation will depend on an automated system similar to our mechanism to determine
energy exchange schedules of PEVs. However, demand response methods for complete households
is very different from providing grid services with PEVs. We plan to continue extensions on this
work that design mechanisms for a smarter grid.

4 Research Team

The research team for this project is a multidisciplinary group of researchers from industry and
a range of departments at Stanford. The lead Principal Investigator (PI) will be Yinyu Ye, Pro-
fessor of Management Science and Engineering, and the team members will include Nicole Taheri
(graduate student in the Institute for Computational and Mathematical Engineering), Bob Eber-
hart (graduate student in Management Science and Engineering), Emmanuel Tsukerman (under-
graduate student in Mathematics), and Robert Entriken (Senior Project Manager, Electric Power
Research Institute).

This project tackles an interdisciplinary problem that requires knowledge and research in a
number of different fields, relying on each team member to play an essential role. Nicole, Emmanuel
and Yinyu will apply Mathematical Programming, Bob will contribute his background in Economics
and Robert will provide his expertise in Power Networks and a Smart Grid. Nicole, Yinyu and
Robert have been working on an EPRI funded project entitled “Robust and Dynamic Market
Decisions for Plug-in Electric Vehicles” since April 1, 2010.
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Budget Justification

The budget would mainly be used to support two graduate student research assistants and one
undergraduate student summer research assistant.

RFP Due Date: December 19, 2011
Project Start Date: July 1, 2012
Project End Date: June 30, 2013

Project Personnel % Effort 9 months 12 months

PI (Academic Council Member or MCL) 7% $14,680

Graduate Students 50% $50,301

Undergraduate Students (Contingent) 50% $8,383.5

Non-Salary Expense

Material and Supplies $1,000

Travel $5,000

Publications $1,000

Computer Supplies/Software $2,000

Tuition $37,635

Total Amount Requested: $120,000
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Principal Investigators

Current support: Yinyu Ye

PI: Yinyu Ye
Project/Proposal Title: “Dynamic Market Model for Plug-in Electric Vehicles”
Source of Support: Electric Power Research Institute (EPRI)
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Total Award Period Covered: 4/1/10 – 9/31/12,
Person-Months Per Year Committed to the Project: Cal: 0 Acad: 0.1 Summ: 0

PI: Michael Saunders and Co-PI: Yinyu Ye
Project/Proposal Title: “Numerical Optimization Algorithms and Software for Systems Biology”
Source of Support: DOE, DE-SC0002009
Total Award Amount: $1,458,940
Total Award Period Covered: 9/15/09 – 9/14/12
Person-Months Per Year Committed to the Project: Cal: 0 Acad: 0 Summ: 1.

PIs: Tom Luo, Jongshi Pang, and Yinyu Ye
Project/Proposal Title: “Optimization Algorithms and Equilibrium Analysis for Dynamic Resource
Allocation”
Source of Support: Air Force Grant, FA9550-09-1-0306
Total Award Amount: $750,000
Total Award Period Covered: 4/1/09 – 3/31/12
Person-Months Per Year Committed to the Project: Cal: 0 Acad: 0.3 Summ: 0.7

PI: Yinyu Ye, Co-PI: Boeing Company
Project/Proposal Title: “GOALI: Region Partitioning”
Source of Support: NSF, NSF GOALI 0800151
Total Award Amount: $318,000
Total Award Period Covered: 7/1/08 – 6/30/11
Person-Months Per Year Committed to the Project: Cal: 0 Acad: 0 Summ: 0.3

PI: Yinyu Ye
Project/Proposal Title: “Stochastic/Robust Dynamic Resource Allocation”
Source of Support: Boeing
Total Award Amount: $1,676,250
Total Award Period Covered: 7/1/04 – 12/31/10
Person-Months Per Year Committed to the Project: Cal: 0 Acad: 1.0 Summ: 0
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· 05/02 – present: Professor, Department of Management Science and Engineering and by
courtesy, Electrical Engineering, Stanford University.

· 09/93 – 04/02: Henry Tippie Professor, Department of Management Sciences and Applied
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· 09/90 – 8/93: Associate Professor, Department of Management Sciences, The University of
Iowa.

· 09/88 – 08/90: Assistant Professor, Department of Management Sciences, The University of
Iowa.

Synergistic Activities

· Recipient of the 2009 John von Neumann Theory Prize

· Recipient of the 2009 IBM Faculty Award.

· Chairman of the technical advisory board of MOSEK, an Optimization Software company.

· Optimization Area Editor of Mathematics of Operations Research (2009-), Optimization Area
Editor of Operations Research (2005-2009).

· E. Delage, The First Prize of INFORMS Nicholson Student Paper Competition, 2008, for
his Ph.D. Thesis supervised by Y. Ye: Distributionally Robust Optimization under Moment
Uncertainty with Application to Data-Driven Problems

· Recipient of the 2007 Stanford Asian American Faculty of Year Award.

· The inaugural recipient of the Farkas Prize of the INFORMS Optimization Society (awarded
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· Plenary speaker at the 19th International Symposium on Mathematical Programming, Rio de
Janeiro, 2006; Semi-plenary speaker at the 17th International Symposium on Mathematical
Programming, Atlanta, 2000.

Collaborators & Other Affiliations

Thesis Advisor: George Dantzig (Stanford), David Luenberger (Stanford), Edison Tse (Stan-
ford). Member of The Institute for Operations Research and the Management Sciences (IN-
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